
6.842 Randomness and Computation February 16, 2022

Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: David Cui, Zixuan Xu

In this lecture, we look at the equivalence between approximate counting and almost uniform
generation for downward self-reducible problems. We shall do this by giving a way to approximately
count the number of satisfying assignments for a DNF formula (also known as the problem #DNF)
by using the scheme we gave last lecture for uniformly generating satisfying assignments to a DNF
formula. We then show that the relationship between approximate counting and uniform generation
goes in both directions. After this we give some basic definitions in randomized complexity and
introduce a naive derandomization algorithm. First, we recall some definitions.

Definition 1. Let L ⊂ {0, 1}∗ be a language and f : L → R≥0 represent a counting problem on L.
A fully polynomial randomized approximation scheme (FPRAS) for f is a probabilistic
algorithm A such that when given input x ∈ L and error parameter ε > 0 satisfies

Pr

[
f(x)

1 + ε
≤ A(x, ε) ≤ (1 + ε)f(x)

]
≥ 3

4

and runs in time polynomial in |x|, ε−1.

Remark The confidence parameter 3/4 can be amplified to 1 − δ at the cost of the algorithm
running in time polynomial in |x|, ε−1, and log δ−1 instead.

Definition 2. A language L ⊂ {0, 1}∗ is downward self-reducible if there exists a polynomial
time Turing machine V with oracle access to L such that V L decides L and V on input x only makes
queries to L on strings of length less than |x|.

Roughly speaking this just says that there’s a way to solve the problem via recursively solving
subproblems. For example, SAT is downward self-reducible. We shall now see that #DNF is
downward self-reducible.

The key insight is to notice that given a DNF instance φ, the number of solutions #φ is given
by the sum of the number of solutions of the DNF formulae φ|x1=0 and φ|x1=1. Hence, if we could
solve the problem on smaller instances, then we can use this to build to the original instance. We
can explicitly see this through the following example.

•

• •

• • • •

x1=0 x1=1

x2=0 x2=1 x2=0 x2=1

#(x1x2∨x1x2∨x2)=3

#(x2)=1 #(x2∨x2∨x2)=2

0 111

We’ll call such a tree for a DNF formula φ a downward self-reducible (DSR) tree where the
general procedure is to fix the ith variable at height i of the tree.

1

1 Approximate counting for #DNF

Given a DNF formula φ, consider the first two levels of its DSR tree.

•

• •

F=#φ(x1,...,xn)

F0:=#φ(0,x2,...,xn) F1:=#φ(1,x2,...,xn)

Since DNF ∈ P, we don’t need to consider unsatisfiable DNF formulae. Namely, we can assume
that F ̸= 0. Now, let Sb := Fb/F be the fraction of satisfying assignments such that x1 = b for
b ∈ {0, 1}. Then note that if Fb ̸= 0, F = Fb/Sb. Without loss of generality suppose F0 ̸= 0.

Now, the main insight is that we have an algorithm for uniform generation for solutions to DNF
formulae and hence we can estimate the value S0! Furthermore, given that we know the value of F0,
we can turn this into an estimation for F (and hence forget about the F1 subtree). But F0 is also
a DNF instance (with one less variable) so we can use the same trick on F0 and recurse down until
we’ve fixed all the variables.

1.1 FPRAS for #DNF

We now describe the algorithm. Let U be the uniform generator for solutions of DNF formulae.
Now we define an estimator for Sb.

E(φ, b, k) :
1 let x1, . . . ,xk be k independent samples of U(φ)
2 return 1

k

∑k
i=1 1xi

1=b

The estimator algorithm E takes in a DNF formula φ and estimates, using k samples, the fraction
of solutions of φ that have the first variable set to b. Now we are ready to describe the FPRAS for
#DNF.

Ak(φ, ε) :

1 if φ ≡ 0 or 1
2 then return val(φ)

3 S̃0 := E(φ, 0, k)
4 S̃1 := E(φ, 1, k)
5 if S̃0 ≥ S̃1

6 then return A
(
φ|x1=0, ε

)
/S̃0

7 else return A
(
φ|x1=1, ε

)
/S̃1

This algorithm is as we described above. We recursively fix the variables of the DNF formula.
Notice here we choose to go down the branch with the larger number of satisfying solutions. This is
both a convenient way of ensuring the branch we go down actually has a satisfying assignment (so
we don’t have an issue of dividing by zero) but also a way to make sure our errors are not too large
as we shall see in the analysis. When all the variables are fixed, we simply return the value of the
formula. In our case, this will always be 1.

2

1.2 Analysis of the FPRAS

We first fix some notation. Let φ be a DNF formula of n variables. φ|b1b2,...,bk for 1 ≤ k ≤ n will
denote the DNF formula φ with x1 = b1, x2 = b2, . . . , xk = bk, where bi ∈ {0, 1}. Let F := #φ and

Fb1b2...bk := #φ|b1b2...bk . Let Sb1b2...bk := Fb1b2...bk/Fb1b2...bk−1
. S̃b1b2...bk and F̃b1b2...bk shall denote

the approximations of these corresponding values (i.e., what the algorithm outputs).

Theorem 3. The algorithm Ak is an FPRAS for #DNF with error parameter ε and confidence
parameter 1− δ when k ∈ O(n3 log(1/δ)/ε2).

Proof. A standard application of the Chernoff bound shows that O(n2 log(1/δ)/ε2) independent
samples of U is sufficient for establishing

Pr
[
Sb1...bk − ε

12n
≤ S̃b1...bk ≤ Sb1...bk +

ε

12n

]
≥ 1− δ

for a single instance of S̃b1...bk . Hence by union-bound we need O(n3 log(1/δ)/ε2) samples to establish

Pr
[
Sb1...bk − ε

12n
≤ S̃b1...bk ≤ Sb1...bk +

ε

12n
for all 1 ≤ k ≤ n, b1, . . . , bk ∈ {0, 1}

]
≥ 1− δ.

Now since S̃b1...bk + S̃b1...bk
≥ Sb1...bk + Sb1...bk

− 2 ε
12n = 1− 2 ε

12n , we have 1/2− ε
12n ≤ S̃b1...bk ≤ 1.

This means we can turn the additive error into a multiplicative one as follows. We fix ε to be small
enough such that 1/2− ε

12n ≥ 1/3 then

S̃b1...bk ≤ Sb1...bk +
ε

12n
= Sb1...bk

(
1 +

ε

12Sb1...bkn

)
≤ Sb1...bk

(
1 +

ε

4n

)
,

S̃b1...bk ≥ Sb1...bk − ε

12n
= Sb1...bk

(
1− ε

12Sb1...bkn

)
≥ Sb1...bk

(
1− ε

4n

)
.

Now finally we estimate the error of F̃ . By construction of the algorithm A we have

F̃ =
F̃b1

S̃b1

=
F̃b1b2

S̃b1 S̃b2

= · · · = 1∏n
k=1 S̃b1...bk

.

Then using the above estimation,

1∏n
k=1 S̃b1...bk

≤ 1∏n
k=1 Sb1...bk

(
1− ε

4n

)
≤

(1 + ε
2n)

n∏n
k=1 Sb1...bk

= F
(
1 +

ε

2n

)n
≤ F (1 + ε).

where the second inequality follows from picking ε
12n ≤ 1/6 as above. Similarly, we can establish

that
1∏n

k=1 S̃b1...bk

≥ F

1 + ε

and hence A is a FPRAS for #DNF.

3

Now, the runtime of this algorithm is upper bounded by

≤ # recursions ·# samples to get
ε

12n
additive error · runtime of uniform generator

≤ n · poly

((ε

12n

)−1
(

1

4n

)−1
)

· poly(n)

= O(poly(n, 1/ε)).

We can bound the error of failure by union bound over all recursion levels as

Pr[algorithm fails] ≤
n∑

i=1

Pr[bad estimate] ≤ n · 1

4n
≤ 1

4
.

Thus we have our desired FPRAS for #DNF.

2 Uniform Generation via Counting

In general, such approximation scheme works for any downward self-reducible problems with a
polynomial time uniform generator. In fact, for any downward self-reducible problem in NP, we
have

poly-time approximate counting #solutions ⇐⇒ poly-time almost uniform generation.

For DNF, we just showed that uniform generation implies approximate counting.
Here we will show a simpler statement. Specifically we will show that perfect counting for

#DNF implies perfect uniform generation. Given a perfect counter for #DNF, consider the following
algorithm:

Recursive Algorithm:

• At b1 . . . bi, use counter to compute r0 = Fb1,...bi0, r1 = Fb1...bi1.

• Go to b1 . . . bi+1 where bi+1 = 0 with probability r0
r0+r1

; otherwise go to b1 . . . bi+1 where
bi+1 = 1.

Claim 4. The above algorithm always reaches a satisfying assignment.

Proof. By construction, the algorithm never take a branch with no satisfying assignments since the
branch would be picked with probability 0.

Claim 5. The above algorithm outputs a satisfying assignment uniformly at random.

Proof. Let b1, . . . , bn be a satisfying assignment, then

Pr[output b1, . . . , bn] =
Fb1

F
· Fb1b2

Fb1

· Fb1b2b2

Fb1b2

· · · · · 1

Fb1...bn

=
1

F
,

which is the same for every satisfying assignment.

We remark in the end that for approximate counters with approximation factor ε′, we have

Pr[output b1, . . . , bn] ≤
1

F
·
(
1 + ε′

1− ε′

)n

≤ 1

F
· 1

1− ε

if we choose ε′ < ε
2n . Then we can get close to uniform generation of satisfying assignments.

4

3 Randomized Complexity

Definition 6. A Language L is a subset of {0, 1}∗.

E.g. {x | x is a CNF formula that is satisfiable}.

Definition 7. P is the class of languages L with polynomial time deterministic algorithm A such
that on input x,

A(x) =

{
accept if x ∈ L

reject if x ̸∈ L.

Definition 8. RP is the class of languages L with polynomial time probabilistic algorithm A such
that on input x,

Pr[A accepts | x ∈ L] ≥ 1/2,

Pr[A rejects | x ̸∈ L] = 1.

This is also called 1-sided error since A always rejects if x ̸∈ L.

Definition 9. BPP is the class of languages L with polynomial time probabilistic algorithm A such
that on input x,

Pr[A accepts | x ∈ L] ≥ 2/3,

Pr[A rejects | x ̸∈ L]2/3.

This is also called 2-sided error.

4 Derandomization via Enumeration

Now we present the simplest form of derandomization.

Given: randomized algorithm A for language L that runs in time t(n) with r(n) random bits, input
x.
Deterministic Algorithm: run A on every possible random string of length r(n), output majority
answer.

Behavior Suppose A ∈ BPP, then

• If x ∈ L, then ≥ 2/3 of random strings cause A to accept =⇒ majority answer is accept.

• If x ̸∈ L, then ≥ 2/3 of random strings cause A to reject =⇒ majority answer is reject.

Runtime
O(2r(n) · t(n)) ≤ O(2t(n) · t(n)).

Note that we are simply using r(n) ≤ t(n) by assuming the computation model of a Turing machine,
but if we have a better bound on r(n), say r(n) = O(log n) and t(n) = poly(n), this would improve
the time bound to poly(n).

Corollary 10. BPP ⊆ EXP := DTIME
(⋃

c 2
nc)

.

5

